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Differentiation and transplantation of functional
pancreatic beta cells generated from iPS cells derived
from a type 1 diabetes mouse model

N /

&

Ssang-Goo Cho

Lab of Molecular Cell Biology and Proteomics,
Molecular & Cellular Reprogramming Center,
Department of Animal Biotechnology,
Incurable Disease Animal model & Stem cell

K Gg\wgﬁg#y Institute (IDASI)

Laboratory




Cleavage
stage embryo

Cultured e

*mESC in 1981 (Martin Evans and Matthew Kaufman) Plstocy
*hESC in 1998 (James Thomson)

Isolated
inner cell mass T

§ i

Blastocyst

Esfablished embryonic stem cell cell culluies

| Ectoderm (external layer) | | Mesoderm (middle layer) | | Endoderm (intemal layer) | | Germ cells |

my L
Pl El" = es Lo

Skin cells Neuron Pigment Cardiac Skeletal Tubule cell Ermofh Pancreafic Thyroid Lung cell  Sperm
of of brain cell muscle  muscle of the on-nd rmuscle cell cell (alveciar
epidemmnis cells kidney cells (in gut) cell)

2012-11-28
KU G




K‘[J KONKUK
UNIVERSITY

The Promise of Stem Cell Research

Identify drug Understanding
targets and Study cell a prevention &

test potential : = differentiation treatment of
therapeutics = ‘ birth defects

Cultured Pluripotent
Stem Cells

L - - e
Toxicity Tissues/Cells for Transplantation i
Testing

Bone marrow Nerve cells Heart muscle Pancreatic
for leukemia for Parkinsons cells for islet cells
& chemotherapy & Alzhiemer’s heart disease for diabetes

disease




Hierarchy of stem cells during differentiation

at each stage, differentiation potential decreases
and specialization increases.
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UV radiation destroys
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Albert Lasker Award for Basic Medical Research

The Albert Lasker Award for Basic Medical Research is one of the prizes awarded by the
Lasker Foundation for the understanding, diagnosis, prevention, treatment, and cure of
disease. The award frequently precedes a Nobel Prize in Medicine: almost 50% of the
winners have gone on to win one.

1946 Carl Ferdinand Cori
1947 Oswald T. Avery, Thomas Francis, Jr., Homer Smith
1948 Vincent du Vigneaud, Selman Waksman, René J. Dubos

1991 Edward B. Lewis, Christiane Nusslein—Volhard Drosophila (1995) Nobel

1993 Gunter Blobel protein targeting (1999) Nobel

1994 Stanley B. Prusiner prion (1997) Nobel

1995 Peter C. Doherty, Jack L. Strominger, Emil R. Unanue, Don C. Wiley, Rolf M. Zinkernagel MHC immune sys(1996) Nobel
1

1

1

996 Robert F. Furchgott, Ferid Murad Nitric Oxide (1998) Nobel
997 Mark S. Ptashne lambda phage
998 Leland H. Hartwell, Yoshio Masui, Paul Nurse cell cycle (2001) Nobel
1999 Clay Armstrong, Bertil Hille, Roderick MacKinnon ion channel (2003)
2000 Aaron Ciechanover, Avram Hershko, Alexander Varshavsky ubiquitin (2004) Nobel
2001 Mario Capecchi, Martin Evans, Oliver Smithies : ES and knockout mouse (2007) Nobel
2002 James E. Rothman, Randy W. Schekman cellular trafficking
2003 Robert G. Roeder eukryotic transcription
2004 Pierre Chambon, Ronald M. Evans, Elwood V. Jensen estrogen receptor
2005 Ernest McCulloch, James Till stem cell (bone marrow)
2006 Elizabeth Blackburn, Carol W. Greider, Jack Szostak telomere & telomerase (2009) Nobel
2007 Ralph M. Steinman dendritic cell immunology
2008 Victor R. Ambros, David C. Baulcombe, Gary B. Ruvkun microRNA

2009 John Gurdon, Shinya Yamanaka nuclear cloning, iPSc

2010 Douglas L. Coleman, Jeffrey M. Friedman leptin
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The Mobel Prize in Physiology or Medicine 2012
Sir John B. Gurdon, Shinya Yamanaka

The Nobel Prize in Physiology or Medicine 2012
Sir John B, Gurdon

shinya Yamanaka

Shinya Yamanaka

The Nobel Prize in Physiology or Medicine 2012 was awarded jointly to Sir John B

Gurdon and Shinya Yamanaka "for the discovery that mature cells can be
reprogrammed to become pluripotent”
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Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors

K Takahashi, 5 Yamanaka - cell, 2006 - Elsevier

Differentiated cells can be reprogrammed to an embryonic-like state by transfer of nuclear
contents into oocytes or by fusion with embryonic stem (ES) cells. Little is known about
factors that induce this reprogramming. Here, we demonstrate induction of pluripotent ...

62323 21E 2HH SaXtg  HH 105002 HE

Induction of pluripotent stem cells from adult human fibroblasts by defined factors

. M Marita, T Ichisaka, K Tomoda, S Yamanaka - cell, 2007 - repository_kulib_kyoto-u_ac jp
4% Successful reprogramming of differentiated human somatic cells into a pluripotent state
would allow creation of patient-and disease-specific stem cells. We previously reported

generation of induced pluripotent stem (iPS) cells, capable of germline transmission, from ...
5049 21E 2F sheXis HH 1311 HE

Generation of germline-competent induced pluripotent stem cells

K Okita, T Ichisaka, S Yamanaka - MNature, 2007 - nature com

Abstract We have previously shown that plunpotent stem cells can be induced from mouse
fibroblasts by retroviral introduction of Oct3/4 (also called Poubf1), Sox2, c-Myc and KIf4, and
subsequent selection for Fhx15 (also called Fbxo15) expression. These induced ...

21672 2E 23 S22 il 4912 HE

[PDF] The homeoprotein Nanoqg Is required for maintenance of pluripotency in mouse epiblast and ES

cells

., K Takahashi, M Maruyama, M Maeda, S Yamanaka - cell, 2003 - ccsu edu

.. underlying plunpotency. Mitsuyo Maeda,2 and Shinya Yamanakal,” Leukemia inhibitory
factor (LIF) has been utilized to ... The second cell fate determination subsequently scrbed
(Yamanaka et al., 2000, 1998). For RT-PCR, first strand cDNA, ...
177951 DI 24 sraflE FH IS HE HEl.

Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts
., K Okita, ¥ Mochiduki, N Takizawa, S Yamanaka - Nature ..., 2007 - nature_.com

Abstract Direct reprogramming of somatic cells provides an opportunity to generate patient-

or disease-specific pluripotent stem cells. Such induced pluripotent stem (IPS) cells were

generated from mouse fibroblasts by retroviral transduction of four transcription factors: ...

1350=2] 2l 2t SfeXiz HHl 1802 HA

=1y © 2010 published by World Science Co.
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Hierarchy of stem cells during differentiation

at each stage, differential potential decreases
and specialization increases.
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1. Factors used for iPSc production

Symbol Oct4 ( POU-domain containing transcription factor )
— » Oocytes, fertilized embryo, ICM, epiblast, ES cells, and germ cells.
cat’

Dppas(Esg) * Crucial for the maintenance of pluripotency

Sox2 ( SRY-related HMG-box DNA-binding protein)

o

Eras

Dnmt31
Ecats ectoderm, cells of neural lineage, brachial arches, and gut endoderm.

» Oocytes, ICM, epiblast, germ cells, multipotent cells of extra-embryonic

P

=

Gdf3 * Regulates the pluripotent state;

Sox15
Dppad
Dppa2
Fthi1y » Gut, skin, and ES cells; also expressed in cells of the blood

0o

KIF4 ( Member of the Kruppel-like factor family of transcription )

Salld » Tumor suppressor or oncogene that functions in regulating cell

differentiation,cell growth, and cell cycle

C-Myc ( Basic helix-loop-helix transcription factor )
« Multiple tissues including the heart, liver, intestine, spleen, kidney, lung,
and mammary gland

* Involved in cell cycle progression, apoptosis, and cellular transformation

Takahashi and Yamanaka,
August 25 2006, Cell

Gl e Current Opinion in Genetics & Development 2008, 18:123-129
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What is iPSc (induced Pluripotent Stem cells) ?

inducing a "forced" expression
of certain genes

Non-pluripotent cell
(adult somatic cell)




Somatic cells
(Non-pluripotent)

Retrovirus / Lentivirus

Adenovirus / Sendai virus etc

Episomal vectors
PiggyBac transposon
Transient transfection

Magnet-based Nanofection

iPS cells k
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Induced Pluripotent Stem Cell Research: A Revolutionary Approach
to Face the Challenges in Drug Screening

Minjung Song*, Saswali Paul*, Hyejin Lim, Ahmed Abdal Dayem, and Ssang-Goo Cho

Department of Animal Biotechnology, Animal Resources Research Center, and SMART-HABS, Konkuk University, Seoul

143-701, Korea

(Received October 12, 2011/ Revised November 8, 2011/Accepted November 10, 2011)
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The generation of iPS cells using non-viral magnetic nanoparticle
based transfection
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The potential application of patient-derived iPSCs in autologous cell
transplantation in the treatment of various diseases.
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Human iPS cell derivation, differentiat KU 2333
applications

Arrhythmic event

Disease modelling

Molecular mechanism
l of the disease

&) | Reprogramming| | Differentiation |

: / /
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Somatic cells iP5 cells Specialized Drug sreening
{unipotent) differentiated and discovery
cells ‘

)

. —
New drugs

Patient

Cell therapy?
Human preclinical
trials ‘in a tube’

Cardiac, neural,
liver toxicity tests |

v
Bellin et al, 2012 Nature Reviews

Adult somatic cells (unipotent) from any patient can be reprogrammed into induced pluripotent stem (iPS) cells. After

inducing differentiation in vitro, human 1P S orm specialized ce hat have several application
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Transcription Factor-Mediated Conversion of Fibrobla
Diverse Cellular Lineages
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Fibroblast

+ Transcription Factor

= Lineage Conversion
: Tomas et al., 2012 Molecular cell

Summary of the diverse cell types generated directly from mouse and human fibroblasts by lineage reprogramming. Factors
listed in parentheses are required for reprogramming human cells but not for mouse cells. References (starting from the
bottom left of the figure and going counterclockwise): Ambasudhan et al., 2011; Caiazzo et al., 2011; Davis et al., 1987; Feng
et al., 2008; Huang et al., 2011; Ieda et al., 2010; Kajimura et al., 2009; Lujan et al., 2012; Pang et al., 2011; Pfisterer et al.,
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Therapeutic application of IPS cells (Diabetes)

Type 1 diabetes is an immune-mediated disease in which pancreatic insulin-
producing beta cells are damaged and destroyed. (Insulitis)

Close up view of an
Islet of Langerhans

Duct

Deita Cell

Red Blood
Cell

Pancreatic

Islet of Beta Alpha
Langerhans Cell Cell




What is Type 1 Diabetes? KU ZE=

Diabetes mellitus type 1 (Type 1 diabetes, T1D, T1DM, IDDM, juvenile diabetes) is a form of
diabetes mellitus.

Type 1 diabetes is an autoimmune disease that results in destruction of insulin-producing beta cells of
the pancreas.

Type 1 diabetes is fatal unless treated with exogenous insulin.

Islet cell transplant is also being investigated and has been achieved in mice and rats, and in
experimental trials in humans as well.

Use of stem cells to produce a new population of functioning beta cells seems to be a future possibility,
but has yet to be demonstrated even in laboratories.

Close up view of an
Islet of Langerhans

Duct

Deita Cell
Red Blood
Cell

Pancreatic

Islet of Beta Alpha
Langerhans Cell Cell




New treatment methods and challenges of diabete

The advantage of islet transplantation ] Limitations of current islet transplantation

» The treatment without the risk of + Requires multiple pancreas donors
hypoglycemia

» Lack of donors- Lack of islets transplantation
» The possibility of repeating the procedure

» No complications of pancreatic exocrine
enzymes

Donor Differentiation of insulin-secreting cells from
pancreas embryonic stem cells

Limitations (ES) [ Possibility (iPS)

» By removing the bioethical
» Ethical problems of using issues

embryo

Pancreatic tissue
digestion

> eliminate the concern of

» Require patient-specific immune rejection

' embryonic stem cells > iPS cells generated from
5 T, Islets in subjects with a genetic
ooty l Recipient » the concern of immune rejection disease
Ty - Li . ‘
Zj( ver >  The risk of teratoma tumor » Genetically matched cell lines
L } formation > Easier to create
Islet . . . . . .
Purification » Is{et transplantation > Highly efficient differentiation

into insulin-producing cells



Potential application of patient-derived iPSCs
in autologous beta-cell transplantation in the treatment of diabetes.

= °
@ Transplant o —___© 1l
— =
= P = —
Funtional .
autologous ‘ -
ells /tissu; /

", Genetically identical
iPS cells

‘We hypothesized that a combination of the cell reprogramming and
differentiation techniques could be used for generation of patient-
specific iPSCs and differentiation into pancreatic beta-like cells.

*Such cells could provide a promising resource for cell therapy to
treat diabetes.
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Limited source resolved through
the production of insulin-secreting cells

iPS@
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Therapeutic application of IPS cells (Diabetes)

Type 1 diabetes is an immune-mediated disease in which pancreatic insulin-
producing beta cells are damaged and destroyed. (Insulitis)

Close up view of an
Islet of Langerhans

Duct

Deita Cell

Red Blood
Cell

Pancreatic
Acini

Islet of  Beta Alpha |« !
Langerhans Cell Cell | 57

Animal models have served a prominent function in the development of the
present ideas of pathogenesis and approaches to therapy. This commentary
addresses the utility and limitations of these models for facilitating the
‘translation’ of immunology research into clinical applications.




Differences of gene expression between normal mice & NOD mice?

Type 1 diabetes is a polygenic disease, meaning many different genes contribute to its
expression. Depending on locus or combination of loci, it can be dominant, recessive, or

somewhere in between.

L.ocus

Chromosome

Marker

IDIDMI1
IDDM2
IDIDM3
1DDM4
IDDMS
IDDM6
IDDM7
IDDMS
IDDMY
IDDMI0
IDDME]
IDDMI2
IDDMI3
IDDMI1S
IDDMI17
No “IDDM™

No “IDDM™

6p21.31
11pls.5
15926
11q13
6q24-27
18g21
2q31-33
6q27
3q21-q25
10pli-gil
1424 3-14q931
2q33
2q34
6q21
10g25.1
léq

ig

HLA

5 insulin VNTR
DI5S107
Fibroblast growth factor-3 (FGF3)
D65476-D65448
D18564
D2S152
D6S1590
D3S1303
D10S193
DD14567
CTLA-4
D2S164

D65283
D10sS1681
D1653098
D15617

The strongest gene, IDDM1, is
located in the MHC Class Il region on
chromosome 6, at staining region
6p21.

This is believed to be responsible for
the histocompatibility disorder
characteristic of type 1: Insulin-
producing pancreas cells (beta cells)
display improper antigens to T cells.

-The non-obese diabetic (NOD) mouse is a classical animal model for autoimmune
type 1 diabetes (T1D), and exhibit clinical or immunological features that closely
mimic those of human T1D patients.

-Thus, the prospect of induced pluripotent stem cells (iPSCs) as a therapeutic
modality against established T1D should be verified in NOD mouse model.
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Stem cells and a cure for type 1 diabetes?

Johim . Todd?

Juvenile Nabetes Reseanch Foundationiellcome Trust Oiabetes and mfammation Laborstory, Department of Adedical Genetics,
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entiated by using speciflic gene transfec-
thons into a widke variety of cell types.
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with proteins and smal . "

the insalin-prodscing islet g cells by
the sntoimmunes activities of antigen-
presenting cells such as B lyvmphocytes,
macraphages, dendritic cells, and (104
and CTMET T lymphocytes. The antli-
islet memory T cell respoanse,. onoe
estabiished, is very strong and long-
fa=ting. akin to the lifelong protectiom
provided by memory T cells against
infeciions.

Therefore, the exciting and nearer-
ferm implications of type I diabetes-

Perhine no surrcmate.  cOmpared with the mouse (11, 12).
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vance for research and «
tiem im typee 1 diabetes?
al. {4}y state. the clinical
are a very ong way off.
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guire rigorous clinical e A e
pecially given the possibility that
transplanted cells could conceivabiy
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aor exposure o environmental faciors.
swch a5 infection. In tvype 1 diabates,
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induced antigen-specific toloramoe,
which could be safer than anmy form of
general immunespnppression (&)1. Typa
1 diabetes resulis from an inherited
loss. of immune olerance (o msoalin
and its precursors and other pancrestsc
islet antigens, leading to destrectiomn of
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Meanwhile, the spontaneous NOD

model remains an invaluable experi-
mental tool and preclinical model, not
least because it has genetic alterations
in pathways that are directly conserved
with human genetic susceptibilities,
including the HLA or MHC class 11
molecules, the IL-2 pathway, and T cell

activation pathways (13. 14). This con-
‘remprnaaloblocse daabhaeauranr

Clearly, the DRSS/ genoctype has beers
associated wilh a decreased age at
diagnosis and perhaps interacts differ-
enily with the ankpown, bt increas-
ingfy permissive., environmental factors
(7). These HI1. A class 11 gemes are the
major genetic effect in type 1 diabetes
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1 diabetes across several couniries.
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this approach may be limited by the
gxtent that the mouse model can be
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rpared with the mouse {11, 13}
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STEP 4

. STEP1 STEP 2 STEP 3
NOD iPS > 3 3

Type | Diabetic Mice | / ’

ﬁ‘...? " g

Collect Pancreatic
Epithelial cells

Reprogram into
Normalizing blood glucose levels ES like-iPS cells
In Type | Diabetic Mice

Differentiate into
Insulin Producing Cells

Genetically identical

iPScells Jeon et. a/

- We developed an optimized stepwise differentiation protocol, based on several different
direct differentiation methods [Melton,Deng], that led to the successful differentiation of
NOD-iPSCs into insulin-producing cells.



Mouse Development

— MEF (13.5 dpc)

(mouse embryonic fibroblast)

— PDE (3 months)

(Pancreas—derived epithelial cells)

. Adult—stage
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B— cell differentiation — From 2008

Differentiation of mouse nuclear transfer embryonic
stem cells into functional pancreatic beta cells Disbetologia (2008) 51:1671-1679

W. Jiang - £. Bai- D. Zhang - Y. Shi - .J. Yong -
5. Chen + M. Ding - H. Deng

Generation of pluripotent stem cells from patients [ g
with type 1 diabetes  cortruncd by Dougias A Metton, kuly & 2009 sant for raviow May 18, 7005

René Maehr?, Shuibing Chen?, Melinda Snitow?, Thomas LudwigP®, Lisa Yagasaki®, Robin Goland, Rudolph L. Leibels,
and Douglas A. Melton®?

Metastable Pluripotent States in NOD Mouse Derived ES Cells

Cell Stem Cell. 2009 June 5; 4(6): 513-524.

Jacob Hanna1=*, Styliani Markoulaki1=*, Maisam Mitalipuva1, Albert W. Cheng1=2, John P.
Cassady1=3, Judith Staerk1, Bryce W. Carey1=3, Christopher J. Lengner1, Ruth Foreman':>,
Jennifer Love1, Qing Gau1, Jongpil Kim1, and Rudolf Jaenisch?:

Stem cells and a cure for type 1 diabetes?
PHLAS Sopbember 15, 3009 wol 108 no. 37 1551315534

John A. Todd'

Highly efficient differentiation of human ES cells and iPS
cells into mature pancreatic insulin-producing cells

Cell Research (2009) 19:429-438.

: L2* i Tangl® D - S 15 R 1 R 1 ; 2
Donghui Zhang™~ ., Wei Jiang™~ . Meng Liu~ ", Xin Sui~ ", Xiaolei Yin~ ", Song Chen’. Yan Shi, Hongkui Deng™
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NPE-iPS1
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Fig. S7. Differentiation of NOD-iPSCs
into pancreatic insulin—producing cells.

Note that immunocytochemical staining
revealed that 2 NOD—-IPSC lines
(NM-iPS1 and NPE-iPS1) and

control ESCs (G4-2) differentiated

into pancreatic beta-like cells,

which expressed

Pdx—1, insulin (INS),
C-peptide (C-PEP),
glucagon (GLU), and
somatostatin (SS)
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Epigenetic memory and preferential lineage—specific differentiation

Generation of endoderm-derived human induced pluripotent stem cells from
primary hepatocytes’

Hua Liu, Zhaohui Ye, Yonghak Kim, Saul HGD&tOlOQy

Sharkis, Yoon-Young Jang

Article first published online: 1 MAR 2010
DOl 10.1002/hep. 23626

Prospects for Pluripotent Stem Cell-Derived
Cardiomyocytes in Cardiac Cell Therapy and as
Disease Models

Christian Freund and Christine L. Mummery”

Department of Anatomy & Embryology, Leiden University Medical Center, Postal Zone: 5-1-P, P.0. Box 9600, 2300 RC
Leiden, The Netherlands

Protective Effects of Human iPS-Derived Retinal Pigment
Epithelium Cell Transplantation in the Retinal Dystrophic
Rat

Amanda-Jayne Carr'®*, Anthony A. Vugler'?, Sherry T. Hikita®?, Jean M. Lawrence'®, Carlos Gias’, Li Li
Chen', David E. Buchholz?, Ahmad Ahmado’, Ma’ayan Semo’, Matthew J. K. Smart', Shazeen Hasan',
Lyndon da Cruz® Lincoln V. Johnson*?, Dennis O. Clegg®?, Pete J. Coffey’

1 Depantment of Ocular Biology and Therapeutics, Institute of Ophthalmeology, University College London, London, United Kingdom, 2 Center for Stem Cell Biology and
Engineering, Department of Molecular, Cellular and Developmental Biclogy, University of California Santa Barbara, Santa Barbara, California, United States of America,
3 Center for the Study of Macular Degeneration, University of Califomia Santa Barbara, Santa Barbara, California, United States of America, 4 Department of Vitreoretinal
Surgery, Moorfields Eye Hospital, London, United Kingdom
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3. Apply a slight pressure to both sides of the incision, raise or pop the kidney out of the mouse

Keep the kidney moist by applying normal saline with a cotton tipped swab

4. Using a syringe needle, make a small scratch on the right flank of the kidney,
5. Into the nick made in the kidney, carefully slide the PE50 tubing under the capsule

%
6. slowly advance beta-cells under the capsule. E I l |

Dry the area with a dry swab and carefully cauterize the nick with low heat.

.




Kilsoo Jeon

the institutional animal care
~and use committee (IACUC),
Konkuk University
(KU10069 and KU10070).

Kilsoo Jeon and Haejin Lim:

generation of NOD—-iPSCs and
performed cell culture and stepwise
differentiation of ES/NOD-iPSCs
toward insulin producing cells.

Jeong Hyun Kim and Hae Yeon Choi:

measured insulin release and glucose
level in diabetic mice.

Seung Hwa Park (prof. in anatomy)
and Jeong Hyun Kim:

performed procedures for paraffin
embedding, haematoxylin/eosin, and
Immunohistochemistry staining.
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Transplantation of the differentiated NPE—iPSCs into diabetic model mice resulted in kidney engraftment
of insulin—producing cells and normalization of blood glucose levels (hyperglycemia).

Figure. 6 Transplantation of NPE-iPSCs-derived insulin-producing cells into STZ-induced
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Grafts were removed

5 weeks after transplantation and
analyzed by H/E staining or
immunohistochemistry (immunofluorescence and DAB-nickel reactions).

Analysis of grafted kidney.

(A-B): Hematoxylin/eosin staining
of grafted kidney.

Grafts were removed 5 weeks

after transplantation and analyzed

by hematoxylin/eosin staining,

either on the non—transplanted kidney
(A) or the NPE=iPSC group kidney (B).

The black arrows in (A-B) represent
the site of kidney capsule injection.
K, kidney; E, engrafted cells.

(C): Expression of insulin,
and C—peptide in the graft.

Brown DAB staining was positive.

Sections were counterstained
with hematoxylin (blue).
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The NOD-iPS cells derived from NOD-MEF and NOD-PDF showed ES cell-like characteristics,
including expression of endogenous pluripotency genes, differentiation of three germ layer

lineages, and formation of teratomas.

We could differentiate the NOD-iPS cells toward functional pancreatic beta cell-like cells, which

may be a promising application tools in biomedical research on type 1 diabetes.

Transplantation of the differentiated NPE-iPSCs into diabetic model mice resulted in kidney

engraftment of insulin-producing cells and normalization of blood glucose levels.

We propose that these NOD-iPSCs will provide a useful tool for investigating genetic

susceptibility to autoimmune diseases and for generating a cellular interaction model of T1D.



Potential application of patient-derived iPSCs
in autologous beta-cell transplantation in the treatment of diabetes.

== @ Transplant -
= " i
Funtional 24
autologous . ’ -

| Reprogram into
st e ES like-iPS cells
Healthy people

:-‘;"' 5‘.‘?“
SO
- Genetically identical for genetic correction
iPS cells

-a combination of the cell reprogramming and differentiation
techniques could be used for generation of patient-specific iPSCs
and differentiation into pancreatic beta-like cells.

*Such cells could provide a promising resource for cell therapy to
treat diabetes.



From 2008

Our group have started from 2008, but

NOD mouse iPS cell generation — Be scooped by ---.

Epigenetic memory and preferential differentiation — Be scooped by ---.

Beta—cell differentiation of iPS cells — Be scooped by :--.

Transplantation of iPSc—derived beta—like cells — Be scooped by ---.

. Hope to publish in high—impact factor journal-:«-----




NOD mouse iPS cell generation — Be scooped by ---.

Cell Stem Cell

Metastable Pluripotent States
in NOD-Mouse-Derived ESCs

Jacob Hanna,'4." Styliani Markoulaki, 4 Maisam Mitalipova,! Albert W. Cheng,'-2 John P. Cassady,!-® Judith Staerk,?
Bryce W. Carey,® Christopher J. Lengner,’ Ruth Foreman,-2 Jennifer Love,! Qing Gao,! Jongpil Kim,1
and Rudolf Jaenisch.3*

- Curative therapy for diabetes mellitus mainly implies replacement of functional
insulin-producing pancreatic cells, with pancreas or islet-cell transplants.

- However, shortage of donor organs spurs research into alternative means of
generating cells from islet expansion, encapsulated islet xenografts, human islet cell-
lines, and stem cells.

- The nonobese diabetic (NOD) mouse is a valuable model for human type 1 diabetes
and now a key strain in the development of humanized mice, which are valuable
animal models for human biomedical research on hematopoiesis, immune system,
infectious disease, cancer, and regenerative medicine.

- Although the NOD mouse has been enormously useful, establishing embryonic
stem cells (ESCs) from NOD mouse is extremely difficult. 49



Beta—cell differentiation of iPS cells — Be scooped by ---.

Soi8Xx 2280 doi:10. 10328/ scibx. 2010879

Publishaed onlims July 22 2010

Imnduced pluripotent stem (APS) cell—
derived pancreatic B-like cells for treating

diabetes

Studies in mice suggest that iIPS cell-derived pancreatic G-like cells cowld
help treat type 1 and type 2 diabstes. Further details on the ressarch, next
steps and licensimnag status are discussed in the article.

Epigenetic memory and preferential differentiation — Be scooped by ---.

Cell Stem Cell
Cell Stem Cell 9, 17-23, July 8, 2011 £2011

Epigenetic Memory and Preferential Lineage-Specific
Differentiation in Induced Pluripotent Stem Cells
Derived from Human Pancreatic Islet Beta Cells

Ori Bar-Nur,"* Holger A. Russ,2® Shimon Efrat,2* and Nissim Benvenisty!."

I5tam Cell Unit, Department of Ganetics, Institute of Life Sclences, The Hebrew University of Jerusalem, 91804, lsmael
“Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel-Aviv University, 62878, lsrael
Thesa authors contributed aqually to this work

*Correspondance; safrat@post.tau.ac.l (S.E), nissimb@cc hujlacil (N.B.)

DOl 10.1016/].etem 2011.06.007
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Transplantation of iPSc—derived beta—like cells — Be scooped by ---.

3— cell differentiation PNAS

Reversal of hyperglycemia in diabetic mouse models
using induced-pluripotent stem (iPS)-derived
pancreatic p-like cells

Zaida Alipio™", Wenbin Liao®™", Elizabeth J. Roemer®, Milton Waner®, Louis M. Fink?, David C. Ward®?, and Yupo Ma®?

“Division of Laboratory Medicine, Nevada Cancer Institute, Las Vegas, NV 89135; h|:|epartment of Pathology, State University of New York, Stony Brook, NY
11794-8691; “Vascular and Birthmark Institute of New York, New York, NY 10023; and “Cancer Research Center of Hawaii, University of Hawaii, Honolulu, HI
96813

Contributed by David C. Ward, June 8, 2010 (sent for review March 25, 2010)

Diabetes mellitus is characterized by either the inability to produce
insulin (type 1 diabetes) or as insensitivity to insulin secreted by
the body (type 2 diabetes). In either case, the body is unable to
move blood glucose efficiently across cell membranes to be used.
This leads to a variety of local and systemic detrimental effects.
Current treatments for diabetes focus on exogenous insulin
administration and dietary control. Here, we describe a potential
cure for diabetes using a cellular therapy to ameliorate symptoms
associated with both reduced insulin secretion and insulin sensi-
tivity. Using induced pluripotent stem (iPS) cells, we were able to
derive p-like cells similar to the endogenous insulin-secreting cells
in mice. These [i-like cells secareted insulin in response to glucose
and corrected a hyperglycemic phenotype in two mouse models of
type 1 and 2 diabetes via an iP5 cell transplant. Long-term correc-
tion of hyperglycemia was achieved, as determined by blood glu-
cose and hemoglobin Alc levels. These data provide an initial
proof of principle for potential clinical applications of reprog-
rammed somatic cells in the treatment of diabetes type 1 or 2.




Our group have started from 2008, but

NOD mouse iPS cell generation — Be scooped by ---.

Epigenetic memory and preferential differentiation — Be scooped by ---.
Beta—cell differentiation of iPS cells — Be scooped by ---.

Transplantation of iPSc—derived beta—like cells — Be scooped by ---.

STEM CELLS AND DEVELOPMENT
Volume 21, Number 14, 2012

© Mary Ann Liebert, Inc.

DOl: 10.1089/s5cd.2011.0665

Differentiation and Transplantation of Functional Pancreatic
Beta Cells Generated from Induced Pluripotent Stem Cells
Derived from a Type 1 Diabetes Mouse Model

Kilsoo Jeon,"" Hyejin Lim”" Jung-Hyun Kim Nguyen Van Thuan,' Seung Hwa Park? Yu-Mi Lim?
Hye-Yeon Choi,' Eung-Ryoung Lee,' Jin-Hoi Kim,' Myung-Shik Lee? and Ssang-Goo Cho'
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Moving stem cell research into the clinics

Curr Diab Rep (2012) 12:450-495
DOT 101007 51 IR9 21202925

Potential of Pluripotent Stem Cells for Diabetes Therapy

Insa 5. Schroeder
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Generation of endoderm-derived human induced pluripotent stem cells from
primary hepatocytes!

Hua Liu, Zhaohui Ye, Yonghak Kim, Saul HEPATOLOGY, Vol. 531, No. 5, 2010
Sharkis, Yoon-Young Jang

Article first published online: 1 MAR 2010
DOl 10.1002/hep. 23626

Prospects for Pluripotent Stem Cell-Derived
Cardiomyocytes in Cardiac Cell Therapy and as
Jourval of Cellular Biochemstry 107:592-599 (2006) Disease Models

Christian Freund and Christine L. Mummery”
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Leiden, The Netherlands
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Epithelium Cell Transplantation in the Retinal Dystrophic
Rat
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- Curative therapy for diabetes mellitus mainly implies replacement of functional
insulin-producing pancreatic cells, with pancreas or islet-cell transplants.

- However, shortage of donor organs spurs research into alternative means of
generating cells from islet expansion, encapsulated islet xenografts, human islet cell-
lines, and stem cells.

- The nonobese diabetic (NOD) mouse is a valuable model for human type 1 diabetes
and now a key strain in the development of humanized mice, which are valuable
animal models for human biomedical research on hematopoiesis, immune system,
infectious disease, cancer, and regenerative medicine.

- Although the NOD mouse has been enormously useful, establishing embryonic

stem cells (ESCs) from NOD mouse is extremely difficult. -
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Diabetes mellitus is characterized by either the inability to produce
insulin (type 1 diabetes) or as insensitivity to insulin secreted by
the body (type 2 diabetes). In either case, the body is unable to
move blood glucose efficiently across cell membranes to be used.
This leads to a variety of local and systemic detrimental effects.
Current treatments for diabetes focus on exogenous insulin
administration and dietary control. Here, we describe a potential
cure for diabetes using a cellular therapy to ameliorate symptoms
associated with both reduced insulin secretion and insulin sensi-
tivity. Using induced pluripotent stem (iP5) cells, we were able to
derive p-like cells similar to the endogenous insulin-secreting cells
in mice. These [fi-like cells secreted insulin in response to glucose
and corrected a hyperglycemic phenotype in two mouse models of
type 1 and 2 diabetes via an iPS cell transplant. Long-term correc-
tion of hyperglycemia was achieved, as determined by blood glu-
cose and hemoglobin Alc levels. These data provide an initial
proof of principle for potential clinical applications of reprog-
rammed somatic cells in the treatment of diabetes type 1 or 2.
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Imnduced pluripotent stem (APS) cell—
derived pancreatic B-like cells for treating
diabetes

Studies in mice suggest that iIPS cell-derived pancreatic G-like cells cowld
help treat type 1 and type 2 diabstes. Further details on the ressarch, next
steps and licensimnag status are discussed in the article.
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